The CTA, in partnership with the Chicago Department of Transportation, the Chicago Department of Housing and Economic Development, and the Federal Transit Administration, performed an Alternatives Analysis Planning Study as a means of exploring a variety of Bus Rapid Transit (BRT) options on Western and Ashland Avenues.

The Alternatives Analysis process involves a series of steps, including robust public outreach and technical evaluations of both positive and negative impacts, that lead to the development of a Preferred Alternative. Details of this process and the results for the Western and Ashland Corridors Bus Rapid Transit Project are included in this summary.
Bus rapid transit (BRT) refers to a form of public transportation that utilizes buses to provide faster, more efficient service than an ordinary bus line. This is typically achieved through improvements to existing infrastructure, vehicles, and scheduling.

Chicago launched the Jeffery Jump (J14) bus service in 2012, which incorporates and demonstrates several BRT features. The Jeffery Jump built off an existing high-ridership bus route, the #14, adding enhancements along portions of Jeffery Boulevard, including dedicated peak-hour bus lanes, transit signal priority, limited stop spacing, and enhanced stations. Chicago is also planning for Central Loop BRT, scheduled to start service in 2014, which is expected to include designated bus-priority lanes on Madison, Washington, Canal, and Clinton. The Central Loop BRT will serve Union Station, Ogilvie Transportation Center, CTA rail connections, and Navy Pier. The lanes will provide a balanced separation of bus, bike and regular traffic lanes, and a new off-street transportation center just south of Union Station will provide key connections between the BRT system and other modes of transportation.

In 2012, CTA kicked off the Western and Ashland Corridors Alternatives Analysis, which is the next opportunity to explore the potential for BRT. This report describes this analysis and provides background on these corridors.

BUS RAPID TRANSIT IN CHICAGO

INTERSECTIONS
Intersections are a main source of delay. By giving buses priority at intersections, BRT systems make service more reliable and decrease travel times.

BUS-ONLY LANES
The central feature of BRT is simple: put public transit riders on the fast track with bus-only lanes. Unimpeded by cars and other vehicles, transit riders on the fast track with bus-only lanes in front of bus lanes are prioritized, so buses spend less time yielding to other vehicles.

PHYSICALLY SEPARATED LANES
In Guangzhou, China—one of the world’s fastest-growing cities—14 miles of bus-only lanes help 445,000 BRT passengers speed along each day. BRT systems aren’t just about better bus rides: they can improve walking and biking, too. BRT systems aren’t just about better bus rides: they can improve walking and biking, too.

VISUALLY SEPARATED LANES
In Seoul, South Korea, visually separated lanes are used in Busan, South Korea.

VEHICLES
By emphasizing passenger comfort, ease of access, and attractive design, BRT vehicles transcend riders’ expectations of bus travel.

BRANDING
Branding. This BRT in Canada’s York Region uses a unique brand identity to distinguish its buses, signage, maps, and fare cards. This attention to detail signals a new, high-quality experience.

DOORS
Designing buses with extra and wider doors enables more passengers to enter and exit at once. Special buses in Bogotá, Colombia’s TransMilenio system feature the sets of doors.

FUEL
Many BRT vehicles, such as Cleveland’s diesel-electric buses, take advantage of cleaner-burning fuel technology.

STATIONS
BRT stations have the power to build and reinforce community identity while facilitating a faster and more comfortable experience.

LEVEL BOARDING
Station platforms that are level with the bus floor—such as those found along Eugene, Oregon’s EMX line—make entering and exiting quick and easy. They also accommodate elderly and disabled passengers, as well as people with strollers or luggage carts.

ICONIC DESIGN
Curitiba, Brazil, is home to the world’s first BRT system. Its tubular stations have become icons of innovative transportation design.

WALKING & BIKING
BRT systems aren’t just about better bus rides: they can improve walking and biking, too. BRT systems aren’t just about better bus rides: they can improve walking and biking, too.

WALKING
BRT systems aren’t just about better bus rides: they can improve walking and biking, too.

BIKING
In Guangzhou, China, people take advantage of dedicated cycling lanes and a bike sharing program integrated into the city’s BRT system. Bike amenities increase access to transportation centers.

OFF-BOARD FARE COLLECTION
Waiting for individual passengers to pay fare takes a lot of time. Paying before boarding eliminates this wait and lets passengers enter and exit at the same time, making boarding quicker and easier.

PROOF-OF-PAYMENT
Riders on Los Angeles’ Orange Line BRT system use fare machines to buy tickets before boarding.

For more information on best practices in BRT design, visit www.itdp.org/brtstandard.

This diagram shows one possible layout for a BRT corridor.
PUBLIC AND COMMUNITY INTEREST IN BRT

BRT has received broad support from a number of civic groups and transportation stakeholders.

MPC Publishes BRT Report

The Metropolitan Planning Council (MPC), with support and strategic guidance from CTA and Chicago Department of Transportation (CDOT), assessed BRT opportunities within Chicago in 2011 using quantitative criteria that scored roadway segments based on the Livability Principles developed by the federal government’s Partnership for Sustainable Communities. This study identified 10 feasible BRT routes within the city that would provide premium transit service. Western and Ashland Avenue corridors were identified as candidate corridors with some of the highest potential ridership within the city.

CAF Highlights Possibilities for BRT in Chicago

In an exhibit titled “Bus Rapid Transit: Next Stop, Chicago,” the Chicago Architectural Foundation (CAF) outlined the features and benefits of BRT, while exploring how BRT is transforming cities around the globe. The exhibit highlighted how features like dedicated bus lanes and innovative station design are improving bus transportation and people’s lives. Architects were invited to visualize BRT stations, one of which was located on Daley Plaza. Experts and transit riders reflected on how public transportation can support a lively, sustainable, and connected Chicago.

MPC/Active Trans Provide Outreach Support

MPC and Active Transportation Alliance (Active Trans) conducted outreach in 2012 to local aldermen and community and stakeholder groups within or near the Western and Ashland Corridors. MPC and Active Trans also created BRT fact sheets and Active Trans developed an infographic showcasing the benefits of implementing BRT in general and on Western and Ashland Avenues.

OTHER BRT PROJECTS IN CHICAGO

Jeffery Jump

• Project Launch in November 2012:
 - High-quality stations with amenities such as lighted shelters, Bus Tracker displays, and ADA accessible sidewalk ramps

Central Loop BRT

• New transportation center near Union Station
• Level-boarding platforms
• Designated bus lanes
• New bikeways
• Combined service Michigan Avenue to Ogilvie every two – three minutes during rush hour

BRT AND COMPLETE STREETS

CDOT’s new Complete Streets Guidelines* provide policies to ensure the public right-of-way is safe and designed for all users. BRT on Western and Ashland Avenues would be examples of Transit Priority Streets, where transit is prioritized ahead of other modes. BRT improvements will support Complete Streets by including:

- Pedestrian Safety Features
 - Improving stations with widened sidewalks, refuge medians, designated crosswalks, and landscaped planters.

- Transit Priority
 - Providing bus-only lanes and improved station features.

- Bicycle Amenities
 - Improved bicycle parking
 - Bicycle lanes are provided for these corridors on parallel Damen and California Avenues.

BRT AND ECONOMIC DEVELOPMENT

BRT can be an economic driver, attracting new development, visitors, and customers. CTA and CDOT are coordinating with the Chicago Department of Housing and Economic Development (DHED) to ensure plans for BRT align with economic opportunities. Strategies include:

- Transit Oriented Development (TOD)
 - Coordinate land use policy surrounding proposed BRT stations to increase ridership and attract investment.

- Pedestrian-Focused Design
 - Create a safe and pedestrian-friendly environment to increase foot traffic.

- Placemaking
 - Encourage placemaking around stations by providing shelters, seating, bicycle parking and sharing, and other public amenities.

CDOT’S COMPLETE STREETS MODAL HIERARCHY FOR TRANSIT PRIORITY STREETS

1. TRANSPORT
2. PEDESTRIAN
3. BICYCLE
4. AUTO

BRT ECONOMIC DEVELOPMENT CASE STUDIES

NEW YORK CITY

Since Select Bus Service (SBS) has been implemented, on 1st & 2nd Avenues in Manhattan there have been 47% fewer commercial vacancies compared to 2% more borough-wide, and on Fordham Road in the Bronx, there has been a 71% increase in retail sales at locally-based businesses, compared to 23% borough-wide.

CLEVELAND, OHIO

The Cleveland Healthline is estimated to have contributed between $4-$5 billion worth of investment since it began operations in October, 2008.

EUGENE, OREGON

According to city officials from Eugene, Oregon, $100 million worth of construction projects are underway near the Franklin EmX line.

Jeffery Jump

Central Loop BRT

CAF event for “Bus Rapid Transit: Next Stop, Chicago”

CDOT’s Complete Streets program accommodates and balances the safety and convenience of all users of the transportation system, in all types of transportation and development projects and through all phases of a project, so all transportation users operate safely within the public right-of-way.
The CTA, in partnership with CDOT, DHED, and the FTA, performed an Alternatives Analysis Planning Study as a means of exploring options for a variety of BRT features and service on both Western and Ashland Avenues. This planning study included analyzing the positive and negative impacts of these BRT options.

The Alternatives Analysis (AA) process involves a series of steps in the development of a Preferred Alternative. As a first step in this process, an existing conditions evaluation was conducted to delineate the problems within the corridors and succinctly define the purpose and need for implementation of this project.

Implementation of BRT was identified as a cost-efficient strategy to provide premium transit along these two corridors in GO TO 2040, the regional long-range plan developed by the Chicago Metropolitan Agency for Planning (CMAP).

CORRIDOR DESCRIPTION

The Ashland Avenue corridor extends between Irving Park Road on the north and 95th Street on the south. The Western Avenue corridor extends between Berwyn Avenue on the north and 79th Street on the south.

STUDY AREA PROFILE

Source: U.S. Census, 2010 *Study Area Profile represents 1/2 mile buffer surrounding Screen 2 corridor limits. **Source: CMAP, 2009

<table>
<thead>
<tr>
<th>Total Population: 463,545</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic or Latino: 12%</td>
</tr>
<tr>
<td>White: 34%</td>
</tr>
<tr>
<td>Black: 28%</td>
</tr>
<tr>
<td>Asian: 4%</td>
</tr>
<tr>
<td>Other: 2%</td>
</tr>
<tr>
<td>Low-income Families: 18,246</td>
</tr>
<tr>
<td>Jobs: 208,923</td>
</tr>
<tr>
<td>Households: 177,888</td>
</tr>
</tbody>
</table>
PROJECT PLANNING PROCESS

Overall Process:
- Determined by Federal Transit Administration
- Two phases: 1) Project Development, and 2) Detailed Design and Construction

Alternatives Analysis
- Part of Project Development
- Identifies options or “alternatives” that include different features and service plans
- Studies the potential impacts of the various project options

PROJECT NEED

CTA and CDDOT are studying these corridors for improvements to address the following concerns:
- Slow bus travel speeds and frequent stops.
- Unreliable bus travel times.
- Large number of transit-reliant customers.
- Regional growth patterns outside of Chicago’s Loop

PROJECT PURPOSE

The purpose of the Western and Ashland Corridors BRT Project is to expand connectivity to the region’s existing transit system by providing a new high quality, high capacity, and cost-effective premium transit service that will address the transportation needs of an expansive population and employment growth outside of the Central Business District (CBD), and support local and regional land use, transportation and economic development initiatives by improving accessibility, mobility, transit travel times and reliability, and passenger facilities in these heavily transit reliant corridors.

PROJECT GOALS

The goals and objectives were developed to provide a comparative analysis of alternatives for this project and include the following:

Goal 1: Strengthen the north/south connections to CTA and Metra’s transit network outside of the CBD, thus improving regional, neighborhood, and job connectivity.

Goal 2: Provide a high quality bus travel experience by improving reliability, travel speed, and ease of use.

Goal 3: Provide a BRT alternative to meet city/regional viability and economic goals.

Goal 4: Balance road design with current and future demand for increased capacity along the corridors.

Goal 5: Develop premium transit solutions that effectively address physical and financial constraints.

Study Area Characteristics

The study area includes high population and employment densities with major centers of activity and employment.
ALTERNATIVES ANALYSIS PROCESS

Based on the project purpose and need statements, and an engineering and planning analysis, a series of alternatives were developed for further screening: No Build, Transportation Systems Management (TSM), and several Build Alternatives further described on pages 13-15.

This AA assumes BRT as the preferred mode because it was identified by a series of previous CTA system planning efforts. It focuses on a multi-tiered evaluation of BRT features within the existing Western and Ashland Corridors. The ultimate goal of the AA is to select a Preferred Alternative that can move forward through the environmental documentation, design, construction, and operation phases.

Because this is a mode-specific AA, a two-level alternatives screening process was conducted. The Screen 1 Evaluation included a “fatal flaw” analysis of the universe of BRT alternatives considered. The purpose of the Screen 1 Evaluation was to review the range of alternatives suggested during project scoping and identify feasible alternatives to move forward in the Screen 2 Evaluation. The purpose of the Screen 2 Evaluation was to further evaluate feasible alternatives against project goals and objectives criteria, and provide a more detailed assessment of alternatives.

POTENTIAL BRT STATION IMPROVEMENTS

These types of amenities are anticipated or will be considered throughout the corridors.

- BRT Median Shelters
- BRT Curb Shelters
- Off-Board Fare Collection
- Bike Racks
- Bus Tracker Signs
- Additional Landscaping and Streetscaping
- Other Station Improvements
 - Trash Cans
 - Custom Signage
 - Seating
- Roadway Improvements
 - New Traffic Signals
 - The roadway would be milled and resurfaced to include colored bus lanes.
 - Improved streetscaping, such as medians and sidewalks, would be constructed.

Typical center-running BRT layout between stations.
SCREEN 1 ANALYSIS
A series of No-Build, TSM, and Build Alternatives were developed for the Screen 1 Evaluation. The build alternatives considered a variety of lane configuration designs to accommodate BRT, including curbside bus lanes, center bus lanes, reversible center lane strategies, barrier-separated bus lanes, as well as two-way adjacent bus lanes. Screen 1 criteria included the following:

- Transit Network and Performance
- Transit Rider Experience
- Livability, Urban Design and Economic Vitality
- Road Design, Traffic and Parking
- Costs and Construction

SCREEN 2 ANALYSIS
Screen 2 included a detailed definition of the remaining alternatives and an evaluation of multiple factors that enabled CTA to assess the differences between the alternatives. Screen 2 criteria included the following:

- Demographics
- Economic
- Environmental
- Ridership
- Transit Operations
- Complete
- Traffic and Parking
- Capital and Operating Cost
- Public Support

BRT ROUTE EXTENTS AND STATION LOCATIONS
Following public review and CTA and CDOT internal review during Screen 2, it was decided to reduce the proposed route extents to mimic the existing #9 and #49 CTA bus routes. Western Avenue BRT service would be located between Berwyn Avenue in the north and 79th Street in the south, while Ashland Avenue BRT service would be located between Irving Park Road in the north and 95th Street in the south.

Both corridors contain unique intersections and sections, which may require special design considerations. This includes the portion of Ashland Avenue within the Illinois Medical District (IMD) and the Boulevard section of Western Avenue where the roadway configurations are atypical.

BRT station locations on Western and Ashland Avenues were identified through the review of existing conditions data including:
- Corridor demographics and land use
- CTA local bus stop locations
- CTA local bus stop boarding and alighting activity

- CTA and Pace local bus stop transfer locations
- CTA rail station transfer locations
- Metra rail station transfer locations
- CTA local bus stop locations previously served by the discontinued #X49 and #X9 express routes
- Recommended BRT station locations included in Integrating Livability Principles Into Transit Planning; An Assessment of Bus Rapid Transit Opportunities in Chicago (MPC, 2011)
- Distance between preliminary BRT station locations (1/2 miles preferred)
- Physical constraints, such as overpasses, along the corridor

BRT ALTERNATIVES: SCREEN 1 TO SCREEN 2

- Screen 1 Alternatives
 - Travel Lane Removal
 - Parking Removal on Both Sides
 - Sidewalk Width Reduction

- Screen 2 Alternatives
 - Travel Lane Removal
 - Parking and Median Removal

- Screen 2 included modified alternatives based on community input and further evaluation of safety and operations, including bus speed, costs, parking, and pedestrian space.

- No-Build Alternative
 The No-Build Alternative consists of the existing street configuration and bus service.

 CTA bus routes #49, #49A, and #49B provide primary north-south service along the Western Avenue Corridor, while CTA bus route #9 currently provides primary north-south service along the Ashland Avenue Corridor. Pace bus route #349 also provides primary north-south service along Western Avenue. During weekday peak periods, buses are scheduled along the Western and Ashland Corridors every four to 10 minutes. The No-Build Alternative provides a baseline for comparing Build Alternatives against existing conditions with the corridor.

- TSM Alternative
 The Transportation Systems Management (TSM) Alternative consists of the existing street configuration and implementation of express bus service without exclusive travel lanes. The TSM Alternative does assume Traffic Signal Prioritization (TSP) upgrades along Western and Ashland Avenues, which are currently under study by CTA. For analysis purposes, the headway for the TSM Alternative is assumed to be five minutes.

 The TSM alternative provides a baseline for comparing Build Alternatives against minimal transit investments within the corridor.

PUBLIC MEETINGS
CTA conducted six public Open House meetings throughout the AA process to gather public input.

Screen 1: June 12, 13, 14, 2012
Screen 2: October 16, 17, 18, 2012

Proposed BRT Routes and Stops
This BRT Alternative includes one center running bus lane in each direction, one automobile travel lane in each direction, parking on both sides, and a median. One automobile travel lane is removed in each direction to accommodate bus lanes, while parking is retained on both sides of the street. Sidewalk widths remain the same and curb extensions are provided at station intersections. Existing medians will be retained or reconstructed. All left turn lane pockets and approximately 25 percent of left turn lanes will be retained.

APPLIES TO ALL BRT BUILD ALTERNATIVES:

All BRT Build Alternatives assume TSP upgrades along Western and Ashland Avenues, which are currently under study by CTA. For analysis purposes, the headway for all BRT Alternatives are assumed to be five minutes. The ultimate service headways will be between five and 15 minutes, and will meet the FTA definition of BRT. Local bus service would continue to operate along the corridor.
ASHLAND AVENUE EVALUATION
Each alternative’s performance on Ashland Avenue was compared and assigned a rating for each factor as compared with the No-Build Alternative. Detailed evaluation results for Ashland Avenue, presented to the public at the Screen 2 Open House meetings, are included in the Appendix.

The Center Running BRT, Travel Lane Removal is the Preferred Alternative based on technical review of evaluation criteria.

Evaluation Category

<table>
<thead>
<tr>
<th>Evaluation Category</th>
<th>TSM</th>
<th>Center Running BRT Travel Lane Removal</th>
<th>Parking and Median Removal</th>
<th>Curbside Running BRT Travel Lane Removal</th>
<th>Parking and Median Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population 2010 and 2040, households 2010 and 2040, employment 2010 and 2040, populations of youth, senior, minority, low-income, and households with no vehicle available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax increment financing districts, empowerment zones, enterprise communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlands, historic districts, historic buildings, parks, open space, hazardous materials, archaeological sites, air quality, noise and vibration, critical habitat, visual impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily boardings, mode split</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus speed, bus travel time, mode split, bus reliability, auto speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preferred Alternative

- **Complete Streets**: Pedestrian space, medians, sidewalk buffers
- **Traffic and Parking**: Auto speed, left turns, parking
- **Capital and Operating Cost**: Capital costs, operating efficiency/savings
- **Public Support**: Comments heard or submitted at Aldermanic briefings, Screen 1 and 2 Open Houses, stakeholder group meetings, and comments received via email

EVALUATION RATINGS
- Substantially Worse than No-Build
- Worse than No-Build
- Similar to No-Build
- Better than No-Build
- Substantially Better than No-Build
WESTERN AVENUE EVALUATION

Each alternative’s performance on Western Avenue was compared and assigned a rating for each factor as compared with the No-Build Alternative. Detailed evaluation results for Western Avenue, presented to the public at the Screen 2 Open House meetings, are included in the Appendix.

The Center Running BRT, Travel Lane Removal is the Preferred Alternative based on technical review of evaluation criteria.

Evaluation Category	TSM	Center Running BRT Travel Lane Removal and Median Removal	Curbside Running BRT Travel Lane Removal and Median Removal
Demographics | | |
Population 2010 and 2040, households 2010 and 2040, employment 2010 and 2040, populations of youth, senior, minority, low-income, and households with no vehicle available | | |
Economic | | |
Tax increment financing districts, empowerment zones, enterprise communities | | |
Environmental | | |
Wetlands, historic districts, historic buildings, parklands, open space, hazardous materials, archaeological sites, air quality, noise and vibration, critical habitat, visual impacts | | |
Ridership | | |
Daily boardings, mode split | | |
Transit Operations | | |
Bus speed, bus travel time, mode split, bus reliability, auto speed | | |

Evaluation Category	TSM	Center Running BRT Travel Lane Removal and Median Removal	Curbside Running BRT Travel Lane Removal and Median Removal
Complete Streets | | |
Pedestrian space, medians, sidewalk buffers | | |
Traffic and Parking | | |
Auto speed, left turns, parking | | |
Capital and Operating Cost | | |
Capital costs, operating efficiency/savings | | |
Public Support | | |
Comments heard or submitted at Aldermanic briefings, Screen 1 and 2 Open Houses, stakeholder group meetings, and comments received via email | | |

EVALUATION RATINGS
- Substantially Worse than No-Build
- Worse than No-Build
- Similar to No-Build
- Better than No-Build
- Substantially Better than No-Build
PREFERRED ALTERNATIVE

Based on Screen 2 evaluation criteria, the Preferred Alternative is Center Running BRT, Travel Lane Removal for both Western and Ashland Avenues. The Preferred Alternative includes the following features:

• Dedicated center running bus lane in each direction to keep buses out of general traffic
• Limited stops: every 1/2 mile and at CTA ‘L’ stations
• Transit Signal Priority intersections and longer green lights to keep traffic moving
• Potential pre-payment for faster boarding, similar to ‘L’ stations
• Wide doors on left side of new, high-capacity vehicles
• Improved lighting, ADA ramps, and real-time travel info
• Maintains existing medians and adds more than 75 blocks of new streetscaping, including medians and sidewalks

In order to accommodate BRT, the following adjustments would occur:

• Elimination of two vehicle travel lanes (one lane in each direction), typically leaving one travel lane in each direction
• Small reduction in parking (92% retained) and loading zones (96% retained)
• Removal of left-hand turns

WHY BRT ON ASHLAND?

Ashland Avenue was prioritized for a number of reasons:

• Demand: Ashland Avenue has the highest bus ridership of all CTA routes with 10 million boardings in 2012, over 31,000 per weekday
• Access to Jobs: Provides access to nearly 133,800 jobs, including large employment centers such as the Illinois Medical District
• Connections to Transit Network: Provides access to seven CTA ‘L’ stations, two Metra stations, and 37 bus routes
• Speed/Time: Up to 83 percent increase in bus speeds
• Reliability: 50 percent more reliable than the local bus
• Riders: Saves the average commuter nearly 65 hours per year compared to local bus

FACTS AT A GLANCE: 16-MILE ASHLAND AVENUE CORRIDOR

3. Source: GIS analysis by CTA using City of Chicago Spatial Database, March 2013. Schools include public and private, and include Pre-K, elementary, middle schools, and high schools. Any schools announced as possibly closing by the Chicago Public Schools or the Chicago Archdiocese as of March 25, 2013 were not included in the count.
4. Source: CTA analysis by CTA using City of Chicago Spatial Database, March 2013. School districts and police and fire stations, and access to hospitals, universities, and museums are available in the City of Chicago Spatial Database. Any hospitals not included in the count are in the area.

Rendering of Preferred Alternative: Center Running BRT, Travel Lane Removal
NEXT STEPS
BRT on Ashland Avenue is moving into its engineering and environmental design phase where the route and configuration will be comprehensively analyzed on a block-by-block basis. While BRT is planned for 16 miles of Ashland Avenue from Irving Park Road to 95th Street, implementation will be phased. The first phase (Phase 1) is being designed, with ongoing public input, for the 5.4-mile central area between Cortland and 31st Streets. Until subsequent phases are built, the BRT service would continue north of Cortland Street and south of 31st Street for the full 16-mile corridor, operating in mixed flow traffic and making stops curbside at the BRT station locations, using existing local bus stops.

FACTS AT A GLANCE: 16-MILE ASHLAND AVENUE CORRIDOR

ASHLAND AVENUE BRT PROJECT SCHEDULE

<table>
<thead>
<tr>
<th>Project Start</th>
<th>Winter 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Analysis and Conceptual Engineering</td>
<td>Spring 2013 – Fall 2013</td>
</tr>
<tr>
<td>Public Engagement</td>
<td>Summer 2013</td>
</tr>
<tr>
<td>Detailed Design</td>
<td>TBD*</td>
</tr>
</tbody>
</table>

*Contingent upon available funding

This appendix includes additional detail, comparing the Preferred Alternative to the other alternatives on a number of factors. The evaluation was based on the best available data at the time.

ASHLAND AVENUE BRT PROJECT

This 5.4 miles between Cortland and 31st Streets has been selected as Phase 1 for BRT on the 16-mile Ashland corridor.

Rendering of Preferred Alternative: Center Running BRT, Travel Lane Removal
Ashland Avenue Evaluation

Center Running BRT, Travel Lane Removal

- **Bus Speed**
 - 15.9 mph
 - Average bus speed
 - (83% increase over local bus)
 - 7.8 minutes
 - Average time savings per trip compared to local bus
 - 26% transit use
 - Percentage of daily trips on transit within corridor
 - (86% increase over existing)
 - 50% improvement in bus reliability compared to existing (based on performance indicators from similar BRT projects)
 - 17.4 mph
 - Average vehicle speed
 - (9% decrease compared to existing)

- **Costs**
 - $9.9 million
 - Average cost per mile
 - ($161 million total)
 - 36%
 - Annual cost efficiency of operating BRT service compared to local bus service

- **Pedestrian Space**
 - 43 feet
 - To 10 ft sidewalk on each side
 - 14 ft station median
 - (all station intersections)
 - 92%
 - 3,617 of 3,617 parking spaces retained
 - 87 of 91 loading zones retained
 - 0%
 - 0 of 248 left turns retained at intersections
 - (0 of 228 left turn lanes retained)

- **Infrastructure Changes**
 - 100% retained and 50,949 feet added
 - 50,949 linear feet of additional raised medians

- **Transportation Changes**
 - 50,949 linear feet of additional raised medians

- **Medians**
 - 100% retained and 50,949 feet added
 - 50,949 linear feet of additional raised medians

Western Avenue Evaluation

Center Running BRT, Travel Lane Removal

- **Bus Speed**
 - 18.4 mph
 - Average bus speed
 - (86% increase over local bus)
 - 7.8 minutes
 - Average time savings per trip compared to local bus
 - 31% transit use
 - Percentage of daily trips on transit within corridor
 - (107% increase over existing)
 - 50% improvement in bus reliability compared to existing (based on performance indicators from similar BRT projects)
 - 16.3 mph
 - Average vehicle speed
 - (9% decrease compared to existing)

- **Costs**
 - $9.8 million
 - Average cost per mile
 - ($165 million total)
 - 43%
 - Annual cost efficiency of operating BRT service compared to local bus service

- **Pedestrian Space**
 - 48 feet
 - To 10 ft sidewalk on each side
 - 12 ft station median
 - (all station intersections)
 - 95%
 - 2,665 of 2,665 parking spaces retained
 - 87 of 91 loading zones retained
 - 0%
 - 0 of 337 left turns retained at intersections
 - (0 of 206 left turn lanes retained)

- **Infrastructure Changes**
 - 100% retained and 59,092 feet added
 - 59,092 linear feet of additional raised medians

- **Medians**
 - 100% retained and 59,092 feet added
 - 59,092 linear feet of additional raised medians
To learn more about this project visit: www.transitchicago.com/ashlandbrt
To learn more about Bus Rapid Transit in Chicago visit: www.BRTCHICAGO.com