Environmental Assessment Summary

(1 of 2)

<table>
<thead>
<tr>
<th>Natural Environment Features</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td>+ Positive Impact</td>
</tr>
<tr>
<td>Water</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Biological</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Geology & Soils</td>
<td>- No Impact</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community Features</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement/ Relocations</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Land Use & Economic Development</td>
<td>+ Positive Impact</td>
</tr>
<tr>
<td>Neighborhood & Community</td>
<td>+ Positive Impact</td>
</tr>
<tr>
<td>Environmental Justice</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Historic & Archeological</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Park Land & Recreational</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Visual Quality</td>
<td>- No Impact</td>
</tr>
<tr>
<td>Noise & Vibration</td>
<td>- Negative Impact</td>
</tr>
</tbody>
</table>

Additional detailed analyses can be found in the full Environmental Assessment. Copies of the full Environmental Assessment are available at this meeting and online at www.transitchicago.com/ashlandbrt.
Environmental Assessment Summary

(2 of 2)

<table>
<thead>
<tr>
<th>Center Running BRT, Travel Lane Removal</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicular Traffic and Parking Features</td>
<td></td>
</tr>
<tr>
<td>Vehicular Traffic - Ashland Avenue</td>
<td>☓</td>
</tr>
<tr>
<td>Vehicular Traffic - Diversion Routes</td>
<td>☓</td>
</tr>
<tr>
<td>Parking</td>
<td>☓</td>
</tr>
<tr>
<td>Transit, Bicycle & Pedestrian Features</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>+</td>
</tr>
<tr>
<td>Bicycle</td>
<td>+</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>+</td>
</tr>
<tr>
<td>Construction and Operational</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>☓</td>
</tr>
<tr>
<td>Safety & Security</td>
<td></td>
</tr>
<tr>
<td>Temporary Construction</td>
<td>☓</td>
</tr>
<tr>
<td>Hazardous Materials</td>
<td>☓</td>
</tr>
</tbody>
</table>

Additional detailed analyses can be found in the full Environmental Assessment. Copies of the full Environmental Assessment are available at this meeting and online at www.transitchicago.com/ashlandbrt.
Traffic Analysis Summary

The potential traffic impacts of the project are very important to identify. To better understand these impacts, CTA and CDOT have performed traffic analyses utilizing current traffic counts and industry standard analysis tools.

Analysis Tools

- **CMAP Highway Model** - Actual impacts of removing one lane of traffic in each direction and left-turns at most intersections on Ashland Avenue were analyzed using the regional transportation model.

- **Traffic Counts** - New traffic counts were completed for all 89 signalized intersections and 29 unsignalized intersections on Ashland Avenue between Irving Park Road and 95th Street. In addition, new traffic counts were performed at major intersections along parallel arterials between Kedzie Avenue and Halsted Street.

- **SYNCHRO Analysis** - The impacts to traffic operations at each intersection on Ashland Avenue were analyzed using SYNCHRO, an industry-standard traffic modeling software.

The detailed results of these analyses are shown in the following boards, including:

- Bus and vehicle speeds
- Congestion levels at specific intersections
- Effects of diverted traffic to nearby roadways

Overall, the analyses showed that:

- The project would have minimal city-wide impacts to traffic
- There would be some moderate impacts to traffic on Ashland Avenue
- Some traffic would divert from Ashland Avenue to parallel arterials, but the Chicago grid system provides multiple routes to the same destination, and can absorb changes across multiple parallel roadways
- There would be minimal impacts to smaller side streets (non-arterials)
Impacts to Transit and Vehicle Speeds
Peak AM and PM Travel Hours

Transit Speed Impacts on Ashland Avenue
- Up to 83% (7.2 MPH) increase in bus speed
- Typical bus trips that currently take 30 minutes will take about 16 minutes

Auto Speed Impacts on Ashland Avenue
- Average 16% (2.5 MPH) reduction in speed
- Typical auto trips that currently take 30 minutes will take about 36 minutes

Methodology for estimating transit speed for the Build Alternative was based on existing AM and PM peak hour bus speed data and the Transit Cooperative Research Program Report 118 – Bus Rapid Transit Practitioner’s Guide.

Methodology for estimating auto speeds for the local level of analysis, as shown on this board, is based on the intersection-specific level of service and intersection delay results presented in the Environmental Assessment (EA). These speeds are based on existing AM (7:15 to 8:15 AM) and PM (4:30 to 5:30 PM) peak hour traffic counts and are analyzed using SYNCHRO modeling software for the 16-mile Ashland Avenue corridor. The model used to generate these results included factors for parking maneuvers and local buses in the general travel lane. Auto speed estimates were developed for two levels of analysis – regional and local. Regional auto speed data, based on the CMAP regional travel demand model, is presented in the EA.
Impacts to Traffic on Ashland Avenue

• Level of service (LOS) is a measure of congestion, used to evaluate all roadway projects

• While the overall scale is LOS A through F, the typical range for Chicago streets is LOS D through F

Methodology for LOS impacts was based on existing field traffic counts collected during AM (7:15 to 8:15 AM) and PM (4:30 to 5:30 PM) peak hour traffic conditions. Data was analyzed using SYNCHRO modeling software for the 16-mile Ashland Avenue corridor. The model used to generate these results included factors for parking maneuvers and local buses in the general travel lane.
• With the removal of a travel lane in each direction, some vehicles currently using Ashland Avenue would use other parallel roadways, mostly arterials or collectors, for their trips.

• An analysis of traffic over a larger area was conducted to better understand the impacts on surrounding areas.

• Traffic analyses, based on field reviews and standard traffic engineering parameters, showed a shift to parallel thoroughfares from Kedzie Avenue to Halsted Street, rather than side streets, primarily because the side streets would not provide time-competitive alternate routes.

CTA and CDOT are committed to maintaining safety and livability on nearby side streets.

Additional detailed traffic analysis will be performed, along with additional public engagement, as part of the next phase of design.

CTA and CDOT will continue to monitor the impacts through all phases of the project and will select measures from CDOT’s Traffic Calming Program to implement, if necessary. These measures include roadway improvements that have been shown to discourage additional through-traffic, and help make residential streets safer for drivers, pedestrians, and bicyclists.
Impacts to Traffic - Diversion
(2 of 2)

How much daily traffic would be diverted from Ashland Avenue?

35% of the total miles driven would shift to other arterials.

How would this traffic be diverted?

Traffic would divert primarily to parallel arterials (not side streets) and would be distributed, so no single arterial would absorb all of the traffic.

The traffic shift would mean vehicle miles traveled (VMT) on nearby arterials would increase by 2% to 12% over current levels.

Percent Change Compared to Current Vehicle Miles Traveled (VMT) with Ashland BRT

1. Vehicle Miles Traveled (VMT) is the total number of miles driven by all automobiles within an average day.

2. A complete list of the roadways tabulated for the Racine Avenue/Southport Avenue corridor included the following (from north to south): Southport Avenue (Irving Park Road to Clybourn Avenue); Clybourn Avenue (Southport Avenue to Cortland Street); Cortland Street (Clybourn Avenue to Elston Avenue); Elston Avenue (Cortland Street to Milwaukee Avenue); Milwaukee Avenue (Elston Avenue to Ogden Avenue); Ogden Avenue (Milwaukee Avenue to Racine Avenue); Racine Avenue (Ogden Avenue to Blue Island Avenue); Blue Island Avenue (Racine Avenue to Loomis Street); Loomis Street (Blue Island Avenue to 31st Street); 31st Street (Loomis Street to Racine Avenue); Racine Avenue (31st Street to 35th Street); 35th Street (Racine Avenue to Morgan Street); Morgan Street (35th Street to 43rd Street); 43rd Street (Morgan Street to Racine Avenue); Racine Avenue (43rd Street to Garfield Boulevard); Garfield Boulevard (Racine Avenue to Loomis Boulevard); Loomis Boulevard (Garfield Boulevard to 87th Street); 87th Street (Loomis Boulevard to Racine Avenue); Racine Avenue (87th Street to 95th Street).

3. Other north/south roads included portions of the following: Humboldt Boulevard, Sacramento Boulevard, Marshal Boulevard, California Boulevard, 31st Boulevard, Western Boulevard, Washtenaw Avenue, Oakley Boulevard, Paulina Street, Morgan Street, Sangamon Street, Green Street, Racine Avenue, Sheffield Avenue.
Impacts to Traffic - AM Peak Diversion

Phase 1 Area
Impacts to Traffic - PM Peak Diversion

Phase 1 Area

Legend
- Green Circle: 50%
- Blue Circle: 25%
- Yellow Circle: 10%
- Pink Circle: 5%
Next Steps

Schedule

<table>
<thead>
<tr>
<th>Alternatives Analysis</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Analysis and Conceptual Engineering</td>
<td>Spring 2013 - Fall 2013</td>
</tr>
<tr>
<td>Detailed Design</td>
<td>To be determined, contingent upon funding</td>
</tr>
</tbody>
</table>

All phases include public engagement.

What Happens Next?

- Comments on the Environmental Assessment (EA) are being taken at this meeting and over a 30-day period that began with publication of the EA.
- Comments will inform the next phase of design.
- Comments and responses will become part of the final EA, which will be available on CTA’s website.
- Detailed design will begin on the first 5.4-mile segment (Phase 1). Concept designs will be refined based on additional technical analysis and community input.
- CTA and CDOT will hold additional public meetings as part of the next phase of design.
To submit comments you have three options:

1. Tell them to a court reporter at this meeting
2. Fill out a comment card and place in the box provided
3. Provide written comments during the 30-day public comment period by e-mail or mail

Mail:
Chicago Transit Authority
Strategic Planning & Policy, 10th Floor
Attn: Joe Iacobucci
567 W. Lake Street
Chicago, IL 60661-1465

E-mail: ashlandbrt@transitchicago.com

Join Mailing/E-list: At the sign-in desk

Web: To learn more about this project or download a copy of the Environmental Assessment, please visit: www.transitchicago.com/ashlandbrt

Finally, if you are interested in learning more about BRT in Chicago, including other projects and events, visit www.BRTCHICAGO.com
New York’s Experience with BRT

Select Bus Service (SBS), New York City’s brand of Bus Rapid Transit, offers fast, frequent, and reliable bus service on high-ridership bus routes, forming citywide bus rapid transit (BRT) network that supplements and complements the existing subway network.

Elements of SBS include:

- Off-board fare payment (before boarding), which reduces time spent at bus stops
- Low-floor, three-door buses to help speed boarding
- Dedicated curbside bus lanes which speed bus travel
- Transit signal priority which reduces delays at red lights
- Bus stops spaced further apart than typical local buses
- Improved passenger information
SBS Routes in Operation

Bx12
FORDHAM ROAD/PELHAM PARKWAY
IMPLEMENTED JUNE 2008
PROJECT LENGTH 7 MILES

Bx12 SBS provides a key crosstown transit connection in the Bronx.

PROJECT ELEMENTS
- Curbside bus lanes
- Transit Signal Priority
- Off-Board Fare Payment
- New Bus Shelters

TRAVEL TIME SAVINGS
20% IN FIRST YEAR

RIDERSHIP GROWTH
10% IN FIRST YEAR

ECOMONIC DEVELOPMENT
- 71% increase in retail sales at locally-based businesses with implementation

* New bus shelters are installed under franchise agreement.

M15
FIRST AVENUE/SECOND AVENUE
IMPLEMENTED OCTOBER 2010
PROJECT LENGTH 15.5 MILES

M15 SBS is the highest ridership bus route in NYC.

PROJECT ELEMENTS
- Offset and curbside bus lanes
- Transit Signal Priority
- Off-Board Fare Payment
- Sidewalk widening

TRAVEL TIME SAVINGS
18% IN FIRST YEAR

RIDERSHIP GROWTH
10% IN FIRST YEAR

ECOMONIC DEVELOPMENT
- 47% fewer vacancies after implementation

M34/34A
34TH STREET
IMPLEMENTED NOVEMBER 2011
PROJECT LENGTH 4.5 MILES

Ridership on M34 SBS has grown even as ridership on other Manhattan crosstown routes has declined.

PROJECT ELEMENTS
- Offset and curbside bus lanes
- Off-Board Fare Payment
- Sidewalk widening

TRAVEL TIME SAVINGS
23% IN FIRST YEAR

RIDERSHIP GROWTH
12% SINCE 2011
SBS Routes in Operation

<table>
<thead>
<tr>
<th>Route</th>
<th>Location</th>
<th>Implementation</th>
<th>Project Length</th>
<th>Project Elements</th>
<th>Travel Time Savings</th>
<th>Ridership Growth</th>
</tr>
</thead>
</table>
| **S79** | Hylan Boulevard | September 2012 | 16 miles | - Curbside bus lanes
- Transit Signal Priority
- Real-time travel information for drivers
- Simplified route path | 13-19% Six months after launch | 5-10% |
| **Bx41** | Webster Avenue | June 2013 | 5.5 miles | - Offset and curbside bus lanes
- Transit Signal Priority
- Off-Board Fare Payment
- Sidewalk widening | More than 15% since launch | *Preliminary results* |
| **B44** | Nostrand Avenue/Rogers Avenue | November 2013 | 9.3 miles | - Offset and curbside bus lanes
- Transit Signal Priority
- Off-Board Fare Payment
- Sidewalk widening | Results will be available in 2014. | |